Научиться можно только тому, что любишь.
Гёте И.

"Как самостоятельно изучить электронику с нуля?" — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку -- будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину... Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: "Раз ты хорош в математике, то тебе надо пойти в электронику". Типичная чушь. Электроника -- это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное -- это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на "метод тыка", но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование -- это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения , владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше - люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать -- это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Климчевский Ч. - Азбука радиолюбителя.
  2. Эймишен. Электроника? Нет ничего проще.
  3. Б.С.Иванов. Осциллограф - ваш помощник (как работать с осциллографом)
  4. Хабловски. И. Электроника в вопросах и ответах
  5. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  6. Ревич. Занимательная электроника
  7. Шишков. Первые шаги в радиоэлектронике
  8. Колдунов. Радиолюбительская азбука
  9. Бессонов В.В. Электроника для начинающих и не только
  10. В. Новопольский - Работа с осциллографом

Это мой список книг для самых "маленьких". Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  3. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  4. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  5. Шустов М. А. Практическая схемотехника.
  6. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  7. Барнс. Эллектронное конструирование
  8. Миловзоров. Элементы информационных систем
  9. Ревич. Практическое программирвоание МК AVR
  10. Белов. Самоучитель по Микропроцессорной технике
  11. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  12. Ю.Сато. Обработка сигналов
  13. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  14. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь .

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет -- будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:

Все что будет дано в этом уроке, необходимо не только прочитать и запомнить некоторые ключевые моменты, а и зазубрить некоторые определения и формулировки. Именно с этого урока начнутся элементарные физические и электрические расчеты. Возможно, будет не все понятно, но не надо отчаиваться, все со временем станет на свои места, главное не спеша усваивать и запоминать материал. Даже если по началу не все будет понятно, постарайтесь хотя бы запомнить основные правила и те элементарные формулы, которые здесь будут рассматриваться. Хорошенько освоив этот урок, вы потом сможете выполнять более сложные радиотехнические расчеты и решать необходимые задачи. Без этого в радиоэлектронике не обойтись. Дабы подчеркнуть значимость данного урока, все формулировки и определения, которые необходимо заучить я буду выделять красным курсивом.

ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ОЦЕНКА

До сих пор, характеризуя количественное значение электрического тока, я иногда пользовался такой терминологией, как, например, малый ток, большой ток. На первых порах такая оценка тока как - то нас устраивала, но она совершенно непригодна для характеристики тока с точки зрения работы которую он может выполнять. Когда мы говорим о работе тока, под - этим подразумеваем, что его энергия преобразуется в какой-либо иной вид энергии: тепло, свет, химическую или механическую энергию. Чем больше поток электронов, тем значительнее ток и его работа. Иногда говорят, сила тока или просто ток. Таким образом слово ток имеет два значения. Оно обозначает само явление движения электрических зарядов в проводнике, а так же служит оценкой количества электричества, проходящего по проводнику. Ток (или силу тока) оценивают количеством электронов, проходящих по проводнику в течение 1 с. Число его огромно. Через нить накала горящей лампочки электрического карманного фонарика, например, ежесекундно проходит около 2000000000000000000 электронов. Вполне понятно, что характеризовать ток количеством электронов неудобно, так как пришлось бы иметь дело с очень большими числами. За единицу электрического тока принят Ампер (сокращенно пишут А) . Так ее назвали в честь французского физика и математика А. Ампера (1775 - 1836 гг.), изучившего законы механического взаимодействия проводников с током и другие электрические явления. Ток 1 А - это ток такого значения, при котором через поперечное сечение проводника за 1 с проходит 6250000000000000000 электронов. В математических выражениях ток обозначают латинской буквой I или i (читается и). Например, пишут: I 2 А или 0,5 А. Наряду с ампером применяют более мелкие единицы силы тока: миллиампер (пишут мА), равный 0,001 А, и микроампер (пишут мкА), равный 0,000001 А, или 0,001 мА. Следовательно, 1 А = 1000 мА или 1000000 мкА. Приборы, служащие для измерения токов, называют соответственно амперметрами, миллиамперметрами, микроамперметрами. Их включают в элетрическую цепь последовательно с потребителем тока, т.е. в разрыв внешней цепи. На схемах эти приборы изображают кружками с присвоенным им буквами внутри: А (амперметр), (миллиамперметр) и мА (микроампер) мкА., а рядом пишут РА, что означает измеритель тока. Измерительный прибор рассчитан на ток не больше некоторого предельного для данного прибора. Прибор нельзя включать в цепь, в которой течет ток, превышающий это значение, иначе он может испортиться.

У вас может возникнуть вопрос: как оценить переменный ток, направление и величина которого непрерывно изменяются? Переменный ток обычно оценивают по его действующему значению. Это такое значение тока, которое соответствует постоянному току, производящему такую же работу. Действующее значение переменного тока составляет примерно 0,7 амплитудного, т. е. максимального значения .

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Говоря о проводниках, мы имеем в виду вещества, материалы и прежде всего металлы, относительно хорошо проводящие ток. Однако не все вещества, называемые проводниками, одинаково хорошо проводят электрический ток, т. е. они, как говорят, обладают неодинаковой проводимостью тока. Объясняется это тем, что при своем движении свободные электроны сталкиваются с атомами и молекулами вещества, причем в одних веществах атомы и молекулы сильнее мешают движению электронов, а в других - меньше. Говоря иными словами, одни вещества оказывают электрическому току большее сопротивление, а другие - меньшее. Из всех материалов, широко применяемых в электротехнике и радиотехнике, наименьшее сопротивление электрическому току оказывает медь. Поэтому - то электрические провода и делают чаще всего из меди. Еще меньшее сопротивление имеет серебро, но это довольно дорогой металл. Железо, алюминий и разные металлические сплавы обладают большим сопротивлением, т. е. худшей электропроводимостью. Сопротивление проводника зависит не только от свойств его материала, но и от размера самого проводника. Толстый проводник обладает меньшим сопротивлением, чем тонкий из такого же материала; короткий проводник имеет меньшее сопротивление, длинный - большее, так же как широкая и короткая труба оказывает меньшее препятствие движению воды, чем тонкая и длинная. Кроме того, сопротивление металлического проводника зависит от его температуры: чем ниже температура проводника, тем меньше его сопротивление. За единицу электрического сопротивления принят ом (пишут Ом) - по имени немецкого физика Г. Ома . Сопротивление 1 Ом - сравнительно небольшая электрическая величина. Такое сопротивление току оказывает, например, отрезок медного провода диаметром 0,15 мм и длиной 1 м. Сопротивление нити накала лампочки карманного электрического фонаря около 10 Ом, нагревательного элемента электроплитки - несколько десятков ом. В радиотехнике чаще приходится иметь дело с большими, чем ом или несколько десятков ом, сопротивлениями. Сопротивление высокоомного телефона, например, больше 2000 Ом; сопротивление полупроводникового диода, включенного в не пропускающем ток направлении, несколько сотен тысяч ом. Знаете, какое сопротивление электрическому току оказывает ваше тело? От 1000 до 20000 Ом. А сопротивленце резисторов - специальных деталей, о которых я буду еще говорить в этой беседе, могут быть до нескольких миллионов ом и больше. Эти детали, как вы уже знаете, на схемах обозначают в виде прямоугольников. В математических формулах сопротивление обозначают латинской буквой (R). Такую же букву ставят и возле графических обозначений резисторов на схемах. Для выражения больших сопротивлений резисторов используют более крупные единицы: килоом (сокращенно пишут кОм), равный 1000 Ом, и мегаом (сокращенно пишут МОм), равный 1000000 Ом, или 1000 кОм. Сопротивления проводников, электрических цепей, резисторов или других деталей измеряют специальными приборами, именуемыми омметрами. На схемах омметр обозначают кружком с греческой буквой? (омега) внутри .

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ

За единицу электрического напряжения, электродвижущей силы (ЭДС) принят вольт (в честь итальянского физика А. Вольта). В формулах напряжение обозначают латинской буквой U (читается «у»), а саму единицу напряжения - вольт - буквой В. Например, пишут: U = 4,5 В; U = 220 В. Единица вольт характеризует напряжение на концах проводника, участке электрической цепи или полюсах источника тока. Напряжение 1 В - это такая электрическая величина, которая в проводнике сопротивлением 1 Ом создает ток, равный 1 А. Батарея 3336Л, предназначенная для плоского карманного электрического фонаря, как вы уже знаете, состоит из трех элементов, соединенных последовательно. На этикетке батареи можно прочитать, что ее напряжение 4,5 В. Значит, напряжение каждого из элементов батареи 1,5 В. Напряжение батареи «Крона» 9 В, а напряжение электроосветительной сети может быть 127 или 220 В. Напряжение измеряют (вольтметром), подключая прибор одноименными зажимами к полюсам источника тока или параллельно участку цепи, резистору или другой нагрузке, на которой необходимо измерить действующее на ней напряжение На схемах вольтметр обозначают латинской буквой V .

в кружке, а рядом - PU. Для оценки напряжения применяют и более крупную единицу - киловольт (пишут кВ), соответствующую 1000 В, а также более мелкие единицы - милливольт (пишут мВ), равный 0,001 В, и микровольт (пишут мкВ), равный 0,001 мВ. Эти напряжения измеряют соответственно кило - вольтметрами, милливольтметрами и микровольтметрами. Такие приборы, как и вольтметры, подключают параллельно источникам тока или участкам цепей, на которых надо измерить напряжение. Выясним теперь, в чем разница понятий «напряжение» и «электродвижущая сила». Электродвижущей силой называют напряжение, действующее между полюсами источника тока, пока к нему не подключена внешняя цепь-нагрузка, например лампочка накаливания или резистор. Как только будет подключена внешняя цепь и в ней возникнет ток, напряжение между полюсами источника тока станет меньше. Так, например, новый не бывший еще в употреблении гальванический элемент имеет ЭДС не менее 1,5 В. При подключении к нему нагрузки напряжение на его полюсах становится равным примерно 1,3-1,4 в. По мере расходования энергии элемента на питание внешней цепи его напряжение постепенно уменьшается. Элемент считается разрядившимся и, следовательно, негодным для дальнейшего применения, когда напряжение снижается до 0,7 В, хотя, если отключить внешнюю цепь, его ЭДС будет больше этого напряжения. А как оценивают переменное напряжение? Когда говорят о переменном напряжении, например о напряжении электроосветительной сети, то имеют в виду его действующее значение, составляющее примерно, как и действующее значение переменного тока, 0,7 амплитудного значения напряжения.

ЗАКОН ОМА

На рис. показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов: источника напряжения - батареи GB, потребителя тока - нагрузки R, которой может быть, например, нить накала электрической лампы или резистор, и проводников, соединяющих источник напряжения с нагрузкой. Между прочим, если эту цепь дополнить выключателем, то получится полная схема карманного электрического фонаря.

Нагрузка R, обладающая определенным сопротивлением, является участком цепи. Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи. Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:
I = U/R,
где I - ток, выраженный в амперах, А; U - напряжение в вольтах, В; R - сопротивление в омах, Ом. Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома), для участка электрической цепи
. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома.

Первый пример: На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи.
Решение: I = U/R = 25 / 5 = 5 А.
Второй пример: На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.

Третий пример: Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10кОм = 10000Ом). Следовательно, U = IR = 0,02 х 10000 = 200 В. На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В, Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом. Это, подчеркиваю, сопротивление накаленной нити лампочки. А сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

В связи с этим приведу еще один пример: Напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.

Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

Закон Ома и производные от него расчетные формулы, достаточно легко запомнить, если пользоваться вот этой графической схемой, т. н. треугольник закона Ома:

Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в треугольнике означает знак деления (по аналогии дробной черты), а вертикальная линия в треугольнике означает знак умножения .

Теперь рассмотрим такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Разберем такой пример. У нас имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В? Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом, как это показано на рис..

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, т.е. 30 Ом - сопротивление нити лампочки Н плюс 25 Ом - сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, т.е. почти такой же, на который рассчитана нить накала лампочки. Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи. Можно включать амперметр в любую точку цепи, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.

Добавочный резистор , включаемый в цепь последовательно с нагрузкой (как, например, на рис. выше), можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, Здесь U - падение напряжения, В; I - ток в цепи, A; R - сопротивление добавочного резистора, Ом. Применительно к нашему примеру резистор R (на рис.) погасил избыток напряжения: U = IR = 0,08 х 25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где R - искомое сопротивление добавочного резистора, Ом; U-напряжение, которое необходимо погасить, В; I - ток в цепи, А. Для нашего примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, и таким образом регулировать ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, т.е. резистором, сопротивление которого можно изменять (см. рис. ниже).

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом, С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть, однако, и другой способ подключения нагрузки к источнику тока с избыточным напряжением - тоже с помощью переменного резистора, но включенного потенциометром, т.е. делителем напряжения, как показано на рис..

Здесь R1 - резистор, включенный потенциометром, a R2 - нагрузка, которой может быть та же лампочка накаливания или какой - то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет). По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 - лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение. Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением. Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех Случаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком - то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами . Слово шунт означает ответвление .

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ

В цепи переменного тока на значение тока влияет не только сопротивление проводника, включенного в цепь, но и его индуктивность. Поэтому в цепях переменного тока различают так называемое омическое или активное сопротивление, определяемое свойствами материала проводника, и индуктивное сопротивление, определяемое индуктивностью проводника. Прямой проводник обладает сравнительно небольшой индуктивностью. Но если этот проводник свернуть в катушку, его индуктивность увеличится. При этом увеличится и сопротивление, оказываемое им переменному току, - ток в цепи уменьшится. С увеличением частоты тока индуктивное сопротивление катушки тоже увеличивается. Запомни: сопротивление катушки индуктивности переменному току возрастает с увеличением ее индуктивности и частоты проходящего по ней тока. Это свойство катушки используют в различных цепях приемников, когда требуется ограничить ток высокой частоты или выделить колебания высокой частоты, в выпрямителях переменного тока и во многих других случаях, с которыми вам придется постоянно сталкиваться на практике. Единицей индуктивности является генри (Гн). Индуктивностью 1Гн обладает такая катушка, у которой при изменении тока в ней на 1 А в течение 1 с развивается ЭДС самоиндукции, рав;ная 1 В. Этой единицей пользуются для определения индуктивности катушек, которые включают в цепи токов звуковой частоты. Индуктивность катушек, используемых в колебательных контурах, измеряют в тысячных долях генри, называемых миллигенри (мГн), или еще в тысячу раз меньшей единицей - микрогенри (мкГн) .

МОЩНОСТЬ И РАБОТА ТОКА

На нагрев нити накала электрической или электронной лампы, электропаяльника, электроплитки или иного прибора затрачивается некоторое количество электроэнергии. Эту энергию, отдаваемую источником тока (или получаемую от него нагрузкой) в течение 1 с, называют мощностью тока. За единицу мощности тока принят ватт (Вт) . Ватт - это мощность, которую развивает постоянный ток 1А при напряжении 1В. В формулах мощность тока обозначают латинской буквой Р (читается «пэ»). Электрическую мощность в ваттах получают умножением напряжения в вольтах на ток в амперах, т.е. P = UI. Если, например, источник постоянного тока напряжением 4,5 В создает в цепи ток 0,1 А, то мощность тока будет: р = 4,5 х 0,1 = 0,45 Вт. Пользуясь этой формулой, можно, например, подсчитать мощность, потребляемую лампочкой карманного фонаря, если 3,5 В умножить на 0,28 А. Получим около 1 Вт. Изменив эту формулу так: I = P/U, можно узнать ток, протекающий через электрический прибор, если известны потребляемая им мощность и подводимое к нему напряжение. Каков, например, ток, идущий через электрический паяльник, если известно, что при напряжении 220 В он потребляет мощность 40 Вт? I = P/I = 40/220 = 0,18 А. Если известны ток и сопротивление цепи, но неизвестно напряжение, мощность можно подсчитать по такой формуле: P = I2R. Когда же известны напряжение, действующее в цепи, и сопротивление этой цепи, то для подсчета мощности используют такую формулу: Р = U2/R. Но ватт - сравнительно небольшая единица мощности. Когда приходится иметь дело с электрическими устройствами, приборами или машинами, потребляющими токи в десятки, сотни ампер, используют единицу мощности киловатт (пишут кВт), равную 1000 Вт. Мощности электродвигателей заводских станков, например, могут составлять от нескольких единиц до десятков киловатт. Количественный расход электроэнергии оценивают ватт - секундой, характеризующей единицу энергии - джоуль. Расход электроэнергии определяют умножением мощности, потребляемой прибором, на время его работы в секундах. Если, например, лампочка электрического фонарика (ее мощность, как мы уже знаем, около 1 Вт) горела 25 с, значит, расход энергии составил 25 ватт - секунд. Однако ватт - секунда величина очень малая. Поэтому на практике используют более крупные единицы расхода электроэнергии: ватт - час, гектоватт - час и киловатт - час. Чтобы расход энергии был выражен в ватт - часах или киловатт - часах, нужно соответственно мощность в ваттах или киловаттах умножить на время в часах. Если, например, прибор потребляет мощность 0,5 кВт в течение 2 ч, то расход энергии составит 0,5 Х 2 = 1 кВт ч; 1 кВт ч энергии будет также израсходован, если цепь будет потреблять (или расходовать) мощность 2 кВт в течение получаса, 4 кВт в течение четверти часа и т.д. Электрический счетчик, установленный в доме или квартире, где вы живете, учитывает расход электроэнергии в киловатт - часах. Умножив показания счетчика на стоимость 1 кВт-ч (сумма в коп.), вы узнаете, на какую сумму израсходовано энергии за неделю, месяц. При работе с гальваническими элементами или батареями говорят об их электрической емкости в ампер - часах, которая выражается произведением значения разрядного тока на длительность работы в часах. Начальная емкость батареи 3336Л, например 0,5 Ач. Подсчитай: сколько времени будет батарея непрерывно работать, если разряжать ее током 0,28 А (ток лампочки фонаря)? Примерно один и три четверти часа. Если же эту батарею разряжать более интенсивно, например, током 0,5 А, она будет работать меньше 1 ч. Таким образом, зная емкость гальванического элемента или батареи и токи, потребляемые их нагрузками, можно подсчитать примерное время, в течение которого будут работать эти химические источники тока. Начальная емкость, а также рекомендуемый разрядный ток или сопротивление внешней цепи, определяющее разрядный ток элемента или батареи, указывают иногда на их этикетках или в справочной литературе.

В этом уроке я попытался систематизировать и выложить максимум необходимой для начинающего радиолюбителя информации по основам электротехники, без которых дальше нет смысла, что то, продолжать изучать. Урок, получился пожалуй самый продолжительный, но и самый важный. Советую отнестись к этому уроку более серьезно, обязательно заучить выделенные определения, если что то, непонятно, перечитывайте несколько раз, что бы вникнуть в суть сказанного. В качестве практической работы, можете поэксперементировать со схемами изображенными на рисунках, т. е. с батарейками лампочками и переменным резистором. Это пойдет вам на пользу. А вообще, в этом уроке, конечно же, весь упор нужно сделать не на практику, а на усвоение теории.

Электротехника - это как иностранный язык. Кто-то уже давно и в совершенстве владеет им, кто-то только начинает знакомиться, а для кого-то - это пока что недостижимая, но манящая цель. Почему многие хотят познать этот таинственный мир электричества? Всего около 250 лет люди знакомы с ним, но сегодня уже трудно себе представить жизнь без электричества. Чтобы познакомиться с этим миром, и существуют теоретические основы электротехники (ТОЭ) для чайников.

Первое знакомство с электричеством

В конце XVIII века французский ученый Шарль Кулон стал активно исследовать электрические и магнитные явления веществ. Именно он открыл закон электрического заряда, который и назвали в честь него, - кулон.

Сегодня известно, что любое вещество состоит из атомов и вращающихся вокруг них электронов по орбитали. Однако в некоторых веществах электроны удерживаются атомами очень крепко, а в других эта связь слабая, что позволяет электронам свободно отрываться от одних атомов и прикрепляться к другим.

Для понимания, что это такое, можно представить большой город с огромным количеством машин, которые движутся без каких-либо правил. Эти машины движутся хаотично и не могут совершать полезную работу. К счастью, электроны не разбиваются, а отскакивают друг от друга, как мячики. Чтобы получить пользу от этих маленьких тружеников, необходимо выполнить три условия:

  1. Атомы вещества должны свободно отдавать свои электроны.
  2. К этому веществу необходимо приложить силу, которая заставит двигаться электроны в одном направлении.
  3. Цепь, по которой движутся заряженные частицы, должна быть замкнутой.

Именно соблюдение этих трех условий и лежит в основе электротехники для начинающих.

Все элементы состоят из атомов. Атомы можно сравнить с Солнечной системой, только у каждой системы свое количество орбит, и на каждой орбите может находиться сразу несколько планет (электронов). Чем дальше орбита находится от ядра, тем меньшее притяжение испытывают на себе электроны, находящиеся на этой орбите.

Притяжение зависит не от массы ядра, а от разной полярности ядра и электронов . Если ядро имеет заряд +10 единиц, электроны в общей сложности тоже должны иметь 10 единиц, но отрицательного заряда. Если электрон с внешней орбиты улетит, то суммарная энергия электронов будет уже -9 единиц. Простой пример на сложение +10 + (-9) = +1. Получается, что атом имеет положительный заряд.

Бывает и наоборот: ядро имеет сильное притяжение и захватывает «чужой» электрон. Тогда на его внешней орбите появляется «лишний», 11-й электрон. Тот же пример +10 + (-11) = -1. В этом случае атом будет отрицательно заряжен.

Если в электролит опустить два материала, обладающих противоположным зарядом, и к ним подключить через проводник, например, лампочку, то в замкнутой цепи потечет ток, и лампочка загорится. Если цепь разорвать, к примеру, через выключатель, то лампочка потухнет.

Электрический ток получается следующим образом. При воздействии электролита на один из материалов (электрод) в нем возникает излишек электронов, и он становится отрицательно заряженным. Второй электрод, наоборот, при действии электролита отдает электроны и становится положительно заряженным. Каждый электрод соответственно обозначается «+" (избыток электронов) и «-" (нехватка электронов).

Хотя электроны имеют отрицательный заряд, но электрод отмечают «+". Эта путаница произошла на заре электротехники. В то время считали, что перенос заряда происходит положительными частицами. С тех пор было составлено множество схем, и чтобы их не переделывать, оставили все как есть.

В гальванических элементах электрический ток образуется в результате химической реакции. Объединение нескольких элементов называют батареей, такое правило можно найти в электротехнике для «чайников». Если возможен обратный процесс, когда под действием электрического тока в элементе накапливается химическая энергия, то такой элемент называют аккумулятором.

Гальванический элемент изобрел Алессандро Вольта в 1800 году. Он использовал медные и цинковые пластины, опущенные в раствор соли. Это стало прообразом современных аккумуляторов и батарей.

Виды и характеристики тока

После получения первого электричества появилась идея передавать эту энергию на некоторое расстояние, и здесь возникли трудности. Оказывается, электроны, проходя через проводник, теряют часть своей энергии, и чем длиннее проводник, тем больше эти потери. В 1826 году Георг Ом установил закон, отслеживающий взаимоотношение между напряжением, током и сопротивлением. Читается он следующим образом: U=RI. Если словами, то получается: напряжение равно произведению силы тока на сопротивление проводника .

Из уравнения видно, что чем длиннее проводник, который увеличивает сопротивление, тем меньше будет ток и напряжение, следовательно, уменьшится мощность. Устранить сопротивление невозможно, для этого нужно понизить температуру проводника до абсолютного нуля, что осуществимо лишь в лабораторных условиях. Ток необходим для мощности, поэтому его трогать тоже нельзя, остается только повысить напряжение.

Для конца XIX века это была непреодолимая проблема. Ведь в то время не было ни электростанций, вырабатывающих переменный ток, ни трансформаторов. Поэтому инженеры и ученые устремили свой взор на радио, правда, оно сильно отличалось от современного беспроводного. Правительство разных стран не видело выгоды от этих разработок и не спонсировало такие проекты.

Чтобы можно было трансформировать напряжение, увеличивать или уменьшать его, необходим переменный ток. Как это работает, можно увидеть из следующего примера. Если провод свернуть в катушку и внутри неё быстро перемещать магнит, то в катушке возникнет переменный ток. В этом можно убедиться, подключив к концам катушки вольтметр с нулевой отметкой посередине. Стрелка прибора будет отклоняться влево и вправо, это будет свидетельствовать о том, что электроны движутся то в одном направлении, то в другом.

Такой способ получения электроэнергии называется магнитная индукция. Его используют, например, в генераторах и трансформаторах, получая и изменяя ток. По своей форме переменный ток может быть:

  • синусоидальным;
  • импульсным;
  • выпрямленным.

Типы проводников

Первое, что влияет на электрический ток - это проводимость материала. Такая проводимость у разных материалов разная. Условно все вещества можно разделить на три вида:

  • проводник;
  • полупроводник;
  • диэлектрик.

Проводником может быть любое вещество, свободно пропускающее через себя электрический ток. К ним относятся такие твердые материалы, как, например, металл или полуметалл (графит). Жидкие - ртуть, расплавленные металлы, электролиты. А также сюда входят ионизированные газы.

Исходя из этого, проводники делят на два типа проводимости:

  • электронный;
  • ионный.

К электронной проводимости относятся все материалы и вещества, в которых для создания электрического тока используются электроны. К таким элементам относятся металлы и полуметаллы. Хорошо проводит ток и углерод.

В ионной проводимости эту роль выполняет частица, имеющая положительный или отрицательный заряд. Ион - это частица с недостающим или лишним электроном. Одни ионы не прочь захватить «лишний» электрон, а другие не дорожат электронами и поэтому свободно их отдают.

В соответствии с этим такие частицы могут быть отрицательно заряженными и положительно заряженными. Примером служит соленая вода. Основным веществом является дистиллированная вода, которая является изолятором и не проводит ток. При добавлении соли она становится электролитом, то есть проводником.

Полупроводники в обычном состоянии не проводят ток, но при внешнем воздействии (температура, давление, свет и подобное) они начинают пропускать ток, хотя и не так хорошо, как проводники.

Все остальные материалы, не вошедшие в первые два вида, относятся к диэлектрикам или изоляторам. Они в обычных условиях практически не проводят электрический ток. Это объясняется тем, что на внешней орбите электроны очень прочно держатся на своих местах, а места для других электронов нет.

При изучении электрики для «чайников» нужно помнить, что применяются все ранее перечисленные виды материалов. Проводники, в первую очередь, используются для соединения элементов схемы (в том числе в микросхемах). Могут присоединять источник питания к нагрузке (это, например, шнур от холодильника, электропроводка и т. д). Применяются при изготовлении катушек, которые, в свою очередь, могут использоваться в неизменном виде, например, на печатных платах либо в трансформаторах, генераторах, электродвигателях и т. п.

Проводники наиболее многочисленны и многообразны. Почти все радиодетали изготавливаются из них. Для получения варистора, например, может использоваться один полупроводник (карбид кремния или оксид цинка). Есть детали, в состав которых входят проводники разных типов проводимости, например, диоды, стабилитроны, транзисторы.

Особую нишу занимают биметаллы. Это соединение двух или более металлов , у которых разная степень расширения. Когда такая деталь нагревается, то она деформируется, благодаря разному процентному расширению. Обычно используется в токовой защите, например, для защиты электродвигателя от перегрева или отключения прибора по достижению заданной температуры, как в утюге.

Диэлектрики в основном выполняют функцию защиты (например, изоляционные ручки электроинструментов). Также они позволяют изолировать элементы электрической схемы. Печатная плата, на которой крепятся радиодетали, изготавливается из диэлектрика. Провода катушки покрываются изоляционным лаком для предотвращения замыкания между витками.

Однако диэлектрик при добавлении проводника становится полупроводником и может проводить ток. Тот же самый воздух становится проводником во время грозы. Сухое дерево плохо проводит ток, но если его намочить, оно уже не будет безопасным.

Электрический ток играет огромную роль в жизни современного человека, но, с другой стороны, может представлять смертельную опасность. Обнаружить его, например, в проводе, лежащем на земле, очень трудно, для этого нужны специальные приборы и знания. Поэтому при пользовании электрическими приборами нужно соблюдать предельную осторожность.

Человеческое тело состоит преимущественно из воды , но это не дистиллированная вода, которая является диэлектриком. Поэтому для электричества тело становится почти проводником. Получив электрический удар, мышцы сокращаются, что может привести к остановке сердца и дыхания. При дальнейшем действии тока кровь начинает закипать, затем происходит иссушение тела и, наконец, обугливание тканей. Первое, что нужно сделать, - прекратить действие тока, при необходимости оказать первую помощь и вызвать медиков.

В природе образуется статическое напряжение, но оно чаще всего не представляет опасности для человека, за исключением молнии. Зато оно может быть опасно для электронных схем или деталей. Поэтому при работе с микросхемами и полевыми транзисторами пользуются заземленными браслетами.

Вероятно, нет необходимости объяснять тебе значение электричества для обеспечения нормальной жизнедеятельности каждого человека. Не будет преувеличением сказать, что сегодня оно является такой же её

составной частью, как вода, тепло, пища. И если в доме погас свет, ты,обжигая пальцы о зажжённую спичку, немедленно звонишь к нам. Долгий и трудный путь проходит электричество прежде, чем попасть в твой дом. Выработанное из топлива на электростанции, оно путешествует через трансформаторные и коммутационные подстанции, через тысячи километров линий, укреплённых на десятках тысяч опор.

Электричество сегодня – это совершенная технология, надёжное и качественное электроснабжение, забота о потребителе и его обслуживание.

Однако, это ещё не всё. Конечное звено в электрической цепочке – это электрооборудование твоего дома. А оно, как и всякое другое, требует екоторых знаний для его правильной эксплуатации. Поэтому мы призываем тебя к сотрудничеству с нами и с этой целью даём некоторые рекомендации и предостережения. Предостережения выделены красным цветом.

Речь пойдёт о следующем:

1. Правовые аспекты. Абонент должен быть ознакомлен со своими правами, обязанностями и ответственностью по отношению к энергоснабжающей организации. То же - по отношению энергоснабжающей организации к нему.

2. Знакомство с квартирной электропроводкой, коммутационной аппаратурой и установочными изделиями.

4. Электричество требует не только определённых знаний, но и строгого соблюдения определённых правил от пользователя. Оно представляет опасность, как для тех, кто не умеет им пользоваться, так и для недисциплинированных «умельцев». Поэтому мы ознакомим тебя с основами электробезопасности.

Мы призываем тебя с пониманием отнестись к нашим рекомендациям и предостережениям. Мы также надеемся, что ты не будешь наносить ущерб упомянутым выше сетевым сооружениям и электрооборудованию.

Желаем тебе всех благ, в том числе и тех, которые даёт электроэнергия.

Азбука электричества

Электрический ток представляет собой направленное движение отрицательно заряженных элементарных частиц – электронов от одного полюса замкнутой электрической цепи к другому. Электроны, способные перемещаться, существуют только в определённых веществах, называемых проводниками. Вещества, не содержащие свободных электронов, принадлежат к категории диэлектриков (изоляторов).

Чтобы движение свободных электронов в проводнике от одного полюса к другому было возможным, между полюсами должна существовать разность потенциалов или напряжение. Его можно уподобить некоему давлению, толкающему электроны. Чтобы непрерывно поддерживать протекание тока в замкнутой электрической цепи, необходим источник электродвижущей силы, который вырабатывает электрическую энергию, преобразуя в неё другие виды энергии.

Количество электронов, проходящее через поперечное сечение проводника в единицу времени, может быть более или менее значительным. Оно определяет интенсивность – силу тока.

В зависимости от материала, длины и сечения материала проводник оказывает прохождению тока большее или меньшее сопротивление. Оно проявляется, в частности, в нагреве проводника.
Чем длиннее проводник, тем больше его сопротивление. Но чем больше сечение проводника, тем меньше его сопротивление.
Источник электроэнергии характеризуется мощностью, то есть количеством электроэнергии, которую он вырабатывает в единицу времени. Электрическое устройство (прибор), потребляющее электроэнергию, также характеризуется мощностью.

Напряжение измеряется в вольтах (В).

Сила (величина) тока измеряется в амперах (А).

Сопротивление измеряется в Омах (Ом).

Мощность измеряется в ваттах (Вт). 1000 ватт составляют 1 киловатт
(кВт).

Выработка и потребление электроэнергии измеряются в киловатт-часах (кВт-ч). (Не путайте их с киловаттами).

Между этими величинами существуют следующие зависимости:

1.Величина тока равняется напряжению, приложенному к концам проводника, делённому на его сопротивление (закон Ома).

2.Мощность электроустановки равна произведению напряжения на ток.

3. Количество потреблённой электроэнергии равно произведению мощности электроустановки на время её работы.

4. Количество тепла, превращённого из электроэнергии, пропорционально величине тока, возведенную во вторую степень, сопротивлению проводника и времени. Например, при увеличении тока в два раза, выделяется в четыре раза больше тепла.

На паспортной табличке электрического изделия, а также в инструкции по его эксплуатации обязательно указываются его номинальные данные: напряжение, мощность (или величина тока) и др.


Аварийные и ненормальные режимы

Короткое замыкание. Если перемкнуть два провода, подводящие ток, к электрическому прибору, ток резко возрастёт (в 10 раз и более). Возрастание тока в 10 раз приведёт к увеличению количества тепла в проводах в 100 раз. При этом проводка будет разрушена и возникнет опасность пожара. Во избежание этого сеть должна быть оборудована устройством мгновенного автоматического отключения.

Перегрузка. Такая же опасность разрушения, но за более продолжительное время возникает при превышении силы тока сверх нормы, допустимой для квартирной проводки. И в этом случае она должна быть автоматически отключена.
Отклонение напряжения. На паспортном щитке электрического прибора нанесено его номинальное напряжение, то есть напряжение, обеспечивающее его нормальную работу. Как правило, оно составляет 230 вольт. При отклонениях напряжения, как в сторону увеличения, так и в сторону уменьшения нарушается нормальная работа и сокращается срок службы электроприбора. При значительном отклонении напряжения возможно повреждение электроприбора. Если в вашей квартире напряжение ниже 200 В, необходимо пользоваться стабилизаторами напряжения.
Скачки напряжения. Речь идет о кратковременном увеличении напряжения, которое может достичь сотен и даже более тысячи вольт. Такое высокое напряжение может повредить некоторые домашние электроприборы. К их числу относятся приборы, которые собираются из мельчайших электронных деталей: компьютеры, телевизоры,
музыкальные центры, видеомагнитофоны и т.п.
Есть несколько факторов, которые вызывают «скачки напряжения»:

Удар молнии в провода линии электропередачи или в непосредственной близости от неё.

Операции автоматической коммутации (включение и отключение мощных электродвигателей промышленных предприятий и др.).

Незапланированные переключения, которые приходится выполнять при возникновении неблагоприятных условий.

О защите от «скачков напряжения» будет сказано далее.

«Перекос» напряжения. Это явление состоит в том, что одна часть электроприборов оказывается под завышенным напряжением, а другая – под заниженным. «Перекос» напряжения происходит при неисправности в сети 400/230 В. Вы можете его заметить по ненормальной работе ваших электроприборов. Так, лампочки меньшей мощности светятся ярким светом, а лампочки большей мощности горят «вполнакала».

Если при этом квартирная сеть не отключилась автоматически, её надо немедленно отключить вручную.

Электрический щиток

В этом разделе мы разберемся с составом электрического щитка.

Ваша квартира питается электроэнергией по двум проводам. Один провод называется фазным, а другой – нулевым. Нулевой провод заземлён. Однако ошибочно считать, что он не представляет опасность.

Прикосновение, как к фазному, так и к нулевому проводу опасно для жизни!

В настоящее время существуют здания с трёхпроводной сетью: фазный провод, нулевой провод, заземляющий провод. Заземляющий провод предназначен для заземления металлических корпусов электрических приборов (более подробно об этом см. в главе «Электробезопасность»). Если заземляющий провод отсутствует, то эти приборы включаются без заземления.

Компоненты электрического щитка

В состав электрического щитка входят электросчетчик, предохранители (или автоматы), устройство защитного отключения.

Счётчик электроэнергии предназначен для измерения потреблённой электроэнергии, которую необходимо своевременно оплатить. Он подключается непосредственно на вводе и может быть установлен в квартире или на лестничной площадке на коллективном щитке учёта. Если счётчик установлен в квартире, то владелец должен обеспечить его сохранность в исправном состоянии: оберегать от ударов и сотрясений, не загромождать подход к нему, обеспечить возможность удобной замены и снятия показаний. Нельзя переносить счётчик без согласования с энергонадзором.
Если вы заметите признаки неисправности счётчика (например, диск счётчика не вращается при наличии нагрузки или вращается при её отсутствии), необходимо немедленно вызвать представителя энергонадзора.
Не пытайтесь нарушить правильность учёта с целью хищения электроэнергии!

Кража электроэнергии не менее постыдна, чем любая кража. Все «способы» хищения хорошо известны энергонадзору, поэтому похититель неминуемо будет разоблачён и привлечён к ответственности. Более того. Не все эти «способы» достаточно безопасны. Известны многочисленные случаи электротравматизма, связанные с попытками хищения.

Для определения расхода электроэнергии за определённый промежуток времени необходимо из показаний счётчика, взятых в конце промежутка, вычесть показания, взятые в начале промежутка. Десятые доли киловатт-часа (в красном окошке после запятой) отбрасываются.

Пример 1. Конечные показания счётчика – 5124. Начальные показания счётчика – 4975. Расход электроэнергии составит: 5124 – 4975 = 149 киловатт-часов.

Пример 2. Конечные показания счётчика – 0047. Начальные показания счётчика - 9950

Расход электроэнергии составит: 10047 – 9950 = 97 киловатт-часов.

На щитке счётчика наносится его передаточное число. Это - число оборотов диска, соответствующее одному киловатт-часу. Оно позволяет определить суммарную мощность нагрузки. Отсчитайте число оборотов диска за определённое время. Умножьте его на 3600 и разделите на передаточное число и на время

Пример 3. Передаточное число счётчика: 1 кВт-ч – 450 оборотов диска. Счётчик сделал 10 оборотов за 60 секунд. Тогда мощность его нагрузки составит: КВт.

Разделив мощность в ваттах на напряжение, мы получим ток нагрузки:

1330/230 = 5,8. А

Предохранитель – электрический аппарат, осуществляющий автоматическое отключение электрической цепи при перегрузке или коротком замыкании. Пробочный предохранитель состоит из сменной плавкой вставки – тонкой проволоки, запаянной в трубку. Вставка размещается в корпусе с контактным устройством – пробке, которая ввинчивается в патрон.

Предохранители устанавливаются и в фазном, и в нулевом проводе. При перегрузках и токах короткого замыкания плавкая вставка нагревается до температуры плавления металла и, расплавляясь, разрывает электрическую цепь (перегорает). После отключения плавкую вставку следует заменить новой.

Пробки одноразового действия, в которых вставка напаивалась, необходимо изъять из обращения.

Автоматы выполняют те же функции, что и предохранители, но по сравнению с ними обеспечивают многократность действия, более высокую точность установки на определённый ток отключения и удобство ручного включения и отключения.

Автомат отключается под действием пружины, которая во включённом положении удерживается защёлкой. Средством защиты в этих автоматах является электромагнитный или биметаллический элемент, которые срабатывают при перегрузках и коротких замыканиях, освобождая при этом защёлку.

Широкое распространение получили пробочные автоматы. Для их установки подходит патрон пробочного предохранителя. Автомат имеет две кнопки: для включения и для отключения. Для включения автомата
после его автоматического отключения необходимо предварительно нажать на отключающую кнопку (доотключить). Аналогичное действие выполняется и в автоматах других типов (например, перевод «язычка» в
нижнее положение).

Автоматы и предохранители характеризуются номинальным током. Это - максимальный ток нагрузки, обеспечивающий их продолжительную работу. Номинальный ток автомата или плавкой вставки должен быть выбран в соответствии с максимально возможным током нагрузки в вашей квартире. При завышенном номинальном токе защита может быть не обеспечена. При заниженном – она будет излишне срабатывать, вызывая отключение.

Методика определения тока нагрузки с помощью счётчика приведена выше.

При этом необходимо включить только те приборы, которые в реальных условиях работают одновременно. Определённый таким образом ток нагрузки округляют в большую сторону до стандартного ближайшего номинального тока.

Не заменяйте перегоревшую плавкую вставку «жучком» (проволокой)!

Не перемыкайте зажимы автомата!

Убедитесь, что при вывернутых пробках (отключённых автоматах) напряжение в квартире отсутствует!

Устройство защитного отключения (УЗО) предназначено для автоматического отключения квартирной сети при попадании человека под напряжение, а также при возникновении неисправности в сети и электроприборах. Этим устройством весьма рекомендуется дополнить существующие защитные устройства. Установку УЗО должен выполнить квалифицированный электрик.

Квартирная электропроводка

В современных зданиях квартирная электропроводка, как правило, выполнена алюминиевым проводом сечением 4 кв. мм. Пропускная способность этой электропроводки составляет около 10 А.

Как указывалось в гл.3, таким должен быть и номинальный ток плавкой вставки или автомата. Этот ток соответствует максимальной мощности включенных приборов – 2300Вт (230.10). Поэтому для приборов значительной мощности (электроплиты, кондиционеры, крупные обогреватели и пр.) на электрощитке вашей квартиры следует подготовить отдельную цепь, Необходимо также установить отдельную розетку, отдельный автомат, правильно распределить мощность для каждого постоянно действующего прибора и правильно распределить мощность приборов между электрическими цепями.

Электрическая проводка выполняется согласно действующим нормам и правилам. При наличии нескольких присоединений в одной квартире каждый автомат должен быть снабжён надписью с наименованием присоединения.

Не занимайтесь самостоятельно прокладкой или реконструкцией проводки. Эту работу может выполнить только квалифицированный электрик.
Электрическую проводку следует оберегать от повреждений. Прежде, чем вбить гвоздь в стену, необходимо убедиться, что в этом месте электропроводка отсутствует (свериться по чертежу или проверить при помощи специального прибора).

Если квартиру заливает водой, необходимо немедленно отключить вашу квартирную сеть и включить её только тогда, когда стены полностью просохнут. Такое же отключение необходимо выполнить при возникновении или угрозе возникновения чрезвычайных ситуаций (пожар, наводнение, технологические аварии и др.).

Электрические розетки служат для включения электрических приборов в сеть. Вилка электроприбора должна подходить к розетке, а номинальный ток электроприбора не должен превышать номинальный ток розетки. Розетка должна быть надёжно закреплена, не иметь не иметь видимых повреждений, копоти, подгоревших контактов. В противном случае её следует заменить.

Прежде, чем пользоваться розеткой, убедитесь, что у вас сухие руки, и вы обуты в сухую обувь. Если электрический прибор снабжён выключателем, то его необходимо раньше выключить этим выключателем, а затем вытянуть вилку из розетки. Включение производится в обратном порядке.
При выключении электроприбора не тяните за шнур. Придерживая розетку одной рукой, другой рукой выньте вилку.
Удлинитель. Пользуйтесь шнуром-удлинителем в случае необходимости и на короткий срок. Не пользуйтесь удлинителями кустарного изготовления, а также удлинителями, имеющими повреждения оболочки. Повреждённый удлинитель следует не ремонтировать, а изъять из пользования. Удлинитель подключают сначала к прибору, а потом к розетке. Выключение производится в обратном порядке.

Разветвитель. При пользовании им необходимо следить, чтобы розетка не перегружалась суммарной нагрузкой. Предпочтительнее пользоваться не «тройником», а разветвителем, снабжённым шнуром и выключателем.

Если в квартире исчезло напряжение

У соседей напряжение также исчезло

Сообщить в энергоснабжающую организацию. Не заниматься устранением неполадок самому.

У соседей напряжение есть. Место короткого замыкания известно.

Отсоединить от сети повреждённый прибор (шнур).

Заменить сгоревшие вставки.

Отключить все электроприборы в квартире.

Вкрутить пробки.

После появления напряжения включить электроприборы

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Место короткого замыкания неизвестно.

Отключить в квартире освещение и все электроприборы.
Вывернуть пробки, осмотреть вставки.
Заменить сгоревшие вставки.
Вкрутить пробки.

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Включать по одному все приборы и освещение.

При последнем действии по п.3 произошло повторное отключение.

Отсоединить прибор, включённый последним. Далее действовать согласно п.2

После повторного включения напряжение в квартире появилось. Причину отключения не удалось выявить.

Вероятной причиной является перегрузка. Отключите ненужные электроприборы.
Не открывайте распределительные щиты общего пользования!
Дождитесь прихода электрика.

Бытовые электроприборы

В вашей квартире находится множество разнообразных электрических приборов, и их количество растёт с каждым годом. Всеми приборами можно и нужно пользоваться более эффективно, экономически выгодно и, главное, безопасно. Для этого надо знать несколько общих положений.

Старайтесь изъять из пользования устаревшие приборы. Современные электроприборы удобны в обращении, более эффективны и, как правило, более выгодны экономически.
Важно, чтобы прибор, который вы приобретаете, соответствовал вашим потребностям. Для этого следует принять во внимание состав семьи, образ жизни, количество детей, частоту пользования и т.д., и только тогда решить, какими характеристиками должен обладать электроприбор, который вы хотите приобрести.

Рекомендуется проанализировать и сравнить потребление электроэнергии различными электроприборами, данные о которых, как правило, приводятся на фабричном ярлыке либо в прилагаемой к прибору инструкции по эксплуатации.

Убедитесь, что проводка и защитные устройства вашей квартиры подходят для установки приобретаемого электроприбора.


Прежде, чем включить электроприбор внимательно ознакомьтесь с инструкцией по его эксплуатации!

Отопительные приборы

Приводим сравнительную характеристику некоторых отопительных приборов.

Рефлектор. Состоит из одного и более нагревательных элементов и отражателя. Энергия передаётся излучением отражателя («зеркала») в ту сторону, куда повёрнут прибор. Потребляемая мощность – 1200 – 3200 Вт. К преимуществам прибора относятся его относительная дешевизна, а также начало нагрева сразу после включения.

Вместе с тем, рефлекторы обладают рядом недостатков:
Тепло распространяется только в одну сторону, помещение прогревается медленно.

Высокая температура может стать причиной возгорания предметов, находящихся вблизи рефлектора.

Высокая температура и недостаточное прикрытие нагревательных элементов представляют опасность для детей.

Отсутствие терморегулятора.

Высушивает воздух в комнате.

Тепловентилятор. Воздух поступает через отверстия в корпусе, нагревается спиралями (одной или несколькими) и распространяется с помощью вентилятора. Потребляемая мощность – 1000 – 3000 Вт. Как равило, в приборе имеются терморегулятор и переключатель режимов (изменяет количество включенных спиралей). Прибор безопасен, так как спирали надёжно скрыты. Летом его можно использовать в качестве вентилятора. Тепловентилятор благодаря принудительной циркуляции быстро и равномерно прогревает помещение. Недостатки прибора:
Высушивает воздух в комнате.
Мощная воздушная струя и шум при работе могут создавать неприятное ощущение у людей с повышенной чувствительностью.

Воздухонагреватель. Воздух поступает через отверстия в нижней части рибора, нагревается от спиралей и выходит сверху. Потребляемая мощность – 500 – 3000 Вт. Прибор также безопасен и может быть установлен в детской комнате. Он также снабжён терморегулятором и переключателем режимов. Однако, по сравнению с тепловентилятором он более медленно прогревает помещение. Воздухонагреватель также высушивает воздух в комнате.

Масляный обогреватель (радиатор). Он содержит нагревательный элемент (один или более), который подогревает масло, находящееся в замкнутой системе. При соприкосновении с нагревателем воздух в комнате нагревается. Потребляемая мощность – 2000 – 2500 Вт. Прибор совершенно безопасен, снабжён переключателем режима и терморегулятором. Тепло распространяется во все стороны равномерно, и воздух в комнате не высушивается. К недостаткам прибора относятся большой вес, относительно высокая стоимость, медленный прогрев помещения.

Как сэкономить электроэнергию при пользовании отопительными приборами.

1. Не допускайте утечек тепла. Важно добиться плотного прилегания дверей и окон в комнатах, для чего следует ликвидировать щели между окном и рамой, дверью и косяком. Проникновение воздуха через щели ведёт к потерям тепла, а, следовательно, и к увеличению расхода электроэнергии.

2. Не обогревайте пустые помещения.

3. Зимой рекомендуется поддерживать температуру в комнате 18 - 20°С при условии, что люди, находящиеся в квартире, одеты в удобную одежду, соответствующую сезону. Если отопительный прибор не снабжён терморегулятором, за температурой воздуха в помещении можно проследить по термометру, установленному на стене. Терморегулятор позволяет установить нужную температуру в обогреваемой комнате. Он выключает прибор, как только температура достигнет заданного уровня, и автоматически включает его, когда температура ниже заданной.

4. Должно быть обеспечено свободное поступление нагретого воздуха от прибора в комнату (особенно при пользовании тепловентилятором). Не используйте прибор для сушки одежды, не загромождайте его различными предметами.

Не помещайте вблизи отопительного прибора горючих материалов и легковоспламеняющихся предметов!

Холодильник

Мощность этого электроприбора сравнительно невелика, однако, он может потреблять достаточное количество электроэнергии, так как работает непрерывно 24 часа в сутки. Для экономии электроэнергии выполняйте ряд рекомендаций.
Выбирайте объём камер приобретаемого холодильника в соответствии с требуемым количеством продуктов, которые будут в нём храниться.
Место установки холодильника должно быть удалено от источников тепла и защищено от солнечных лучей.

Для обеспечения полной изоляции рекомендуется плотно закрывать дверцы и периодически проверять изолирующие резиновые прокладки. Деформированные прокладки ведут к проникновению тёплого внешнего
воздуха в камеры, что, в свою очередь, влечёт за собой повышенное потребление электроэнергии. Дверцы открывайте как можно реже и не держите их долго открытыми.

Следите, чтобы задняя стенка холодильника не покрывалась пылью. Обеспечивайте свободную циркуляцию воздуха вокруг холодильника.
Не ставьте в холодильник тёплую пищу. Подождите, пока пища остынет до комнатной температуры.

Установите термостат на температуру 5. - 7..
Своевременно размораживайте и чистите холодильник. Нарост льда существенно увеличивает расход электроэнергии. Пользуйтесь разведенным в воде уксусом – это поможет избавиться от неприятного запаха. Перед размораживанием снизьте температуру в морозильной камере. Это позволит оставаться продуктам холодными в течение длительного срока после извлечения из морозильной камеры.

Морозильную камеру рекомендуется заполнять, по крайней мере, на две трети своей ёмкости, что обеспечит её эффективную работу. С другой стороны, в неё не следует помещать слишком много продуктов, так как необходимо обеспечить свободную циркуляцию воздуха в камере.

Стиральная машина

Стиральная машина – один из самых распространённых электроприборов, без которых трудно представить нашу жизнь. Это так просто – закладываем бельё, насыпаем стиральный порошок, наливаем смягчитель, нажимаем кнопку и через некоторое время получаем чистое приятно пахнущее бельё. Важно знать, что не все стиральные машины одинаковы, как и не одинаковы требования к стирке в разных семьях. Поэтому, прежде чем приобрести стиральную машину необходимо учесть:
Состав вашей семьи. Чем больше семья, тем больше должна быть мощность машины и объём её стирального бака.

Скорость отжима. Выбирайте машину с более высокой скоростью отжима, поскольку, чем она выше, тем суше выстиранное бельё.
Потребление машиной электроэнергии, воды и моющих средств. Последние модели стиральных машин более экономичны.
Современная стиральная машина потребляет ток более 10 А. Её нельзя включать в общую квартирную сеть. Подготовка базы для стиральной машина включает в себя выполнение прокладку отдельной электропроводки, установку автомата на 16 А и отдельной трёхполюсной розетки.
Следующие рекомендации помогут вам сэкономить электроэнергию при пользовании стиральной машиной:

Рекомендуется закладывать в бак не больше и не меньше того количества белья, на которое она рассчитана. Перегрузка, так же, как и недогрузка неэкономична. Кроме того, страдает и качество стирки.
Рекомендуется использовать программу с предварительным полосканием только для очень загрязнённого белья. Без предварительного полоскания экономится около 20% электроэнергии.

Стирка при температуре воды 60. вместо 90. сэкономит вам около 25% электроэнергии. Поэтому, если бельё не слишком загрязнено, имеет смысл стирать его при более низкой температуре.

Электрическая плита

Электрическая плита так же, как и стиральная машина, требует прокладки отдельной электропроводки, установки автомата на 16 А и отдельной трёхполюсной розетки. Рекомендуется отдать предпочтение плите не столь мощной, но изготовленной по современной технологии – это позволит вам экономить электроэнергию.
Для эффективной и экономной эксплуатации рекомендуется:

Диаметр кастрюли должен соответствовать диаметру конфорки.
Кастрюля должна иметь гладкое дно и закрыта подходящей крышкой
При варке пищи в кастрюле не должно быть много воды.
После того, как вода в кастрюле закипит, рекомендуется снизить температуру до необходимого для продолжения варки уровня.

Незадолго до окончания приготовления пищи рекомендуется выключить конфорку, так как её медленное остывание обеспечит достаточно тепла для завершения варки.

При приготовлении пищи старайтесь, как можно реже поднимать крышку, что сохраняет тепло, предотвращает избыточный расход энергии и сокращает время приготовления пищи.
Пользуйтесь скороваркой – это сэкономит и время и электроэнергию.Воздерживайтесь от предварительного нагрева духовки, если этого не требует рецепт;

Не открывайте дверцу духовки без необходимости.

Освещение

Освещение жилого помещения должно соответствовать гигиеническим нормам. Недостаточная освещённость наносит ущерб здоровью. Так, например, не следует выключать потолочную лампу, освещая комнату только настольной лампой, выключать полностью освещение при просмотре телевизионных передач и пр. Осветительный элемент выбирается в зависимости от того, где он будет находиться, и от возлагаемой на него функции (общее, местное, декоративное и др.). Правильно выбранные тип и мощность лампы дадут возможность эффективно и экономно расходовать электроэнергию.


Существует широкий ассортимент электроламп, из которых пока самыми распространёнными являются лампы накаливания. Эти лампы дешевы, не требуют дополнительных комплектующих деталей. Заменить сгоревшую лампу не представляет сложности. Лампы накаливания наиболее точно передают цвет окружающих предметов. К недостаткам ламп накаливания относится относительно небольшой срок службы (до 1000 часов). Другой существенный недостаток – неэкономичность. Лишь мене 5% затраченной энергии преобразуется излучаемый свет; всё
остальное уходит на нагревание.

Флуоресцентные лампы наиболее распространены после ламп накаливания. Такая лампа потребляет в 6 раз меньше электроэнергии, чем лампа накаливания, при равной освещённости, а также имеет более продолжительный срок службы. Флуоресцентная лампа действует только с помощью дополнительных приборов – дросселя и стартёра. К недостаткам флуоресцентной лампы относятся также её большие размеры, незначительный шум и некоторое искажение цвета освещаемых предметов.

Одно из важнейших направлений усовершенствования технологии освещения – это создание флуоресцентных компакт-ламп. По своей конструкции и принципу действия компакт-лампа ничем не отличается от флуоресцентной за исключением размеров. По сравнению с лампами накаливания флуоресцентные комакт-лампы дают возможность сократить затраты электроэнергии на 70% - 85%, при этом срок их службы в 8 – 13 раз выше. Поэтому вскоре они заменят в быту лампы накаливания.

Для экономии электроэнергии без ухудшения качества освещения рекомендуется:

Максимальное использование естественного освещения.

Следите за чистотой окон.

Не загромождайте подоконники.

Не завешивайте окно несколькими занавесями и шторами.

Применение соответствующих осветительных приборов.

Использование светлых оттенков (отражающих свет) для окраски стен, потолка пола и при выборе цвета мебели.
Применение средств управления освещением (сдвоенные выключатели для люстр, выключатели с реостатом и пр.).
Использование одной лампы накаливания большой мощности вместо двух маломощных. Например, использование одной лампы мощностью 100 Вт вместо двух 60-ваттных позволяет сократить потребление электроэнергии на 20%, не говоря уже о снижении расходов на покупку ламп.
Продуманная система освещения в доме существенно влияет на расход электроэнергии.

Электронные приборы

К электронным приборам в вашей квартире, чувствительным к скачкам напряжения, относятся телевизоры, видеомагнитофоны, музыкальные центры, компьютеры и др., которые собираются из мельчайших электронных деталей на базе прогрессивных технологий. Именно они могут пострадать в первую очередь от скачков напряжения, если при их создании не была предусмотрена соответствующая защита. При этом сокращается срок службы прибора, а в некоторых случаях может произойти его поломка. Для защиты чувствительных электронных приборов рекомендуется следующее:

Не подключать чувствительные электронные приборы к той же розетке или к той же цепи, к которой уже подключён другой прибор с электромотором, например, холодильник, стиральная машина.
Выключать чувствительные электронные приборы и отключать их от сети (вилкой), если в течение длительного времени ими не пользуются.
Рекомендуется также отключать чувствительные электронные приборы во время грозы, бури и ливня, а также при перебоях в электроснабжении.
С помощью специальных предохранителей обеспечить защиту чувствительных электронных приборов от скачков напряжения. Такие предохранители устанавливаются меду розеткой и штепсельной вилкой чувствительного электронного прибора. Их можно установить самостоятельно.
Приобретать чувствительные электронные приборы со специальной защитой. По данному вопросу вы можете проконсультироваться не только с продавцом, но и с техниками и другими специалистами из специализированных мастерских.

Применение всех вышеперечисленных средств не гарантирует полную защиту чувствительных электронных приборов, но существенно снижает вероятность их повреждения.

Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок . Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»

Шаг 1: Напряжение, ток, сопротивление

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

  • Батареи;
  • Аккумуляторы.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Батареи 1,5 В

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

Никель-металлогидридные (NiМГ)

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках .

3.7 В литий-ионные и литий-полимерные аккумуляторы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

9-вольтовая батарея

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

Свинцово-кислотные

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.

Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

Как лучше выбрать батарею для поделки ?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки ) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку , которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

Шаг 3: Резисторы

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Магазин сопротивлений:

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.

По составу резисторы бывают:

Углеродные:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

Осаждения углерода:

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Пленочный резистор:

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор:

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Метало-керамические:

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

Прецизионные резисторы:

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Плавкий резистор:

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

Терморезисторы:

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

Фоторезисторы:

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

Продолжение следует