Известно, что источником радиации являются радиоактивные ядра, способные самопроизвольно распадаться. Само слово «радиоактивный» вызывает страх и неприятие, в то время как оно означает лишь нестабильность отдельных изотопов различных элементов. Отметим, что естественные радиоактивные ядра существовали всегда, до и после появления ядерной энергетики. Любая вещь, любой материальный предмет из тех, которые нас окружают, содержит определенную долю радионуклидов (не имеющих никакого отношения к ядерной отрасли), способных распадаться и испускать ионизирующее излучение - пресловутую радиацию. Установлено, что в более ранние геологические периоды естественный радиационный фон на нашей планете был гораздо выше, чем сейчас.

Виды радиации

Известны три основных вида радиации, испускаемой радиоактивными ядрами

  • альфа-излучение
  • Представляет собой поток альфа-частиц, состоящих из двух протонов и двух нейтронов (собственно говоря, это ядра атомов гелия), образовавшихся в результате альфа-распада тяжелых ядер.
  • бета-излучение
  • Это поток электронов или позитронов (бета-частиц), образовавшихся в результате бета-распада радиоактивных ядер.
  • гамма-излучение
  • Гамма-излучение сопровождает альфа- или бета-распад и представляет собой поток гамма-квантов, являясь, по сути, электромагнитным излучением - то есть, оно имеет волновую природу, аналогичную природе света. Отличие в том, что гамма-кванты обладают гораздо большей энергией, чем кванты светового излучения, и поэтому имеют бóльшую проникающую способность.

Проникающая способность радиационного излучения

Самая маленькая проникающая способность у альфа-частиц: пробег в воздухе составляет несколько сантиметров, в биологической ткани - доли миллиметра. Поэтому плотная одежда обеспечивает необходимую и достаточную степень защиты от внешнего альфа-излучения. Бета-частицы (поток электронов) обладают большей проникающей способностью: пробег в воздухе - несколько метров, в биологической ткани - до нескольких сантиметров. Поэтому при работе с источниками жесткого бета-излучения возникает необходимость в использовании дополнительной защиты (защитные экраны, контейнеры). Наконец, наибольшей проникающей способностью обладает гамма-излучение: электромагнитные волны способны проходить тело насквозь. Для источников мощного гамма-излучения требуется более тяжелая защита: свинцовые экраны, толстостенные бетонные конструкции.

Источники радиации

Вообще, важно понимать, что источниками радиации являются не только радионуклиды. В частности, проходя ежегодное флюорографическое обследование или делая компьютерную томографию, мы подвергаемся действию рентгеновского излучения, которое (как и гамма-излучение) представляет собой поток квантов. Это означает, что два типа излучения, имея различное происхождение, в равной степени относятся к проникающей радиации. Иными словами, хотя в рентгеновской трубке не используются радионуклиды, она также является источником ионизирующего излучения.

Другим источником радиации, не связанным с естественными и искусственными радионуклидами, является космическое излучение. В открытом космосе это излучение обладает огромной энергией, но, проходя сквозь атмосферу, в значительной степени ослабляется и не оказывает значимого влияния на человека. По мере увеличения высоты возрастает и радиационный фон - поэтому люди, часто совершающие авиаперелеты, получают повышенную дозу радиации; еще большую дозу получают космонавты, выходящие в открытый космос.

Если сопоставить вклад различных источников в дозу, получаемую средним россиянином, то получится следующая картина: около 84,4% дозы он получит от природных источников, 15,3% - от медицинских источников, 0,3% - от техногенных источников (АЭС и других предприятий ядерной отрасли, сюда же включены последствия ядерных взрывов). В структуре природных источников можно выделить радон (50,9% от суммарной дозы), терригенное излучение, обусловленное радионуклидами, находящимися в земле (15,6%), космическое излучение (9,8%), и, наконец, внутреннее облучение за счет радионуклидов, находящихся в теле человека (калий-40, а также радионуклиды, поступающие с водой, воздухом, пищей) - 8,1%. Конечно, эти цифры условны и меняются в зависимости от региона, но общее соотношение всегда остается постоянным.



Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Чем больше энергия излучения и глубина проникновения лучей, тем тяжелее лучевая травма.

Так проникающая способность g-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.

При внешнем облучении человека:

    альфа-частицы полностью задерживаются поверхностным слоем кожи;

    бета-частицы не могут проникнуть в глубь человеческого организма больше, чем на несколько миллиметров;

    гамма-кванты способны вызвать облучение всего тела.

Период полураспада

Число распадов в секунду в радиоактивном источнике называется активностью . Единица измерения активности – беккерель (Бк,Bq): 1 Бк равен одному распаду в секунду.

Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада. Уменьшение концентрации радионуклидов в организме в два раза называется периодом полувыведения. К примеру, на территории Украины в результате аварии на ЧАЭС выпали следующие радионуклиды с периодами полураспада и полувыведения: углерод 14 – 5730 лет и 200 дней соответственно; цезий 137 , 30 лет и 100 дней соответственно; стронций 90 – 29 и 20 лет соответственно; йод 131 – 8 и 138 дней соответственно. Безопасной для проживания и использования территория становится по истечении примерно 10 периодов полураспада.

Природный радиоактивный фон

На население земного шара постоянно воздействует природный радиационный фон. Это космическая радиация (протоны, альфа-частицы, гамма-лучи), излучение естественных радиоактивных веществ, присутствующих в почве, и излучение тех радиоактивных веществ (также естественных), которые попадают в организм человека с воздухом, пищей, водой. Суммарная доза, создаваемая естественным излучением, сильно варьируется в различных районах Земли. В Украине она колеблется от 70 до 200 мбэр/год.

Естественный фон дает примерно одну треть так называемой популяционной дозы общего фона. Еще треть человек получает при медицинских диагностических процедурах – рентгеновских снимках, флюорографии, просвечивании и тд. Остальную часть популяционной дозы дает пребывание человека в современных зданиях. Вклад в усиление радиационного фона вносят и тепловые электростанции, работающие на угле, поскольку уголь содержит рассеянные радиоактивные элементы. При полетах на самолетах человек также получает небольшую дозу ионизирующего облучения. Но все это очень малые величины, не оказывающие вредного влияния на здоровье человека.

Действие ионизирующего излучения

В органах и тканях биологических объектов как и в любой среде при облучении в результате поглощения энергии идут процессы ионизации и возбуждения атомов.

Действие ионизирующего излучения заключается в радиолизе молекул воды. Как известно, вода составляет около 80 % массы всех органов и тканей человеческого организма.

При ионизации воды образуются радикалы, обладающие как окислительными, так и восстановительными свойствами.

СВОБОДНЫЕ РАДИКАЛЫ – частицы с неспаренными электронами на внешних атомных или молекулярных орбиталях

Пероксидные вещества (или свободные радикалы) обладают сильными окислительными и токсическими свойствами. Вступая в соединения с органическими веществами, они вызывают значительные химические изменения в клетках и тканях, денатурации белковых и других органических структур с образованием токсических гистаминоподобных веществ.

Проходя через вещество, микрочастицы излучений растрачивают свою энергию и столкновениях с орбитальными электронами, а также во взаимодействиях с мощными электрическими и магнитными полями при пролете частиц вблизи ядра. Большая часть столкновений и взаимодействий происходит все же не с ядрами, а с электронами на оболочках атома. Выбивание электрона из атома приводит к образованию иона, т. е. к ионизации.
Энергия частиц, испускаемых при радиоактивном распаде, имеет порядок мега- или килоэлектронвольт, а в единичном столкновении поглощается (передается атомам среды) в среднем около 33-35 эВ энергии, из чего следует, что растрата всей энергии потребует большого числа актов ионизации. Например, при средней энергии β-излучения 90Y, равной 930 кэВ, полное поглощение ее произойдет в ~10в4 столкновениях.
Общая длина пути частицы зависит от плотности среды. В табл. 2.5 приведены примерные значения проникающей способности различных видов излучений на различных материалах. В общем случае соотношение проникающей способности разных видов излучения можно представить как γ > β > α.


Кроме проникающей способности, другим важным показателем излучении является плотность ионизации, которую определяют как среднее число пар ионов, образующихся на единице длины пути частицы. Естественно, что оба эти показателя взаимосвязаны обратным соотношением. Плотность ионизации зависит, помимо прочего, от размера частиц излучения: чем крупнее частицы, тем больше вероятность столкновений при прохождении через атомы среды и тем выше плотность ионизации. Наибольшее значение этого показателя у α- и n-излучений, гораздо ниже - у β-излучений (потоков электронов и позитронов), и совсем невелика - у γ-фотонов, тем более что последние еще и не имеют электрического заряда, а потому не могут отклоняться в магнитных и электрических полях в атоме. Но порядку величины плотности ионизации α-, β- и γ-излучений в однотипных средах различаются в соотношении примерно 10в4:10в2: 1.
След от движения частиц в среде называется треком. От столкновение с орбитальными электронами направление движения такой крупной частицы, как α (масса ее примерно в 7400 раз больше массы электрона), практически не изменяется, но траектории легких частиц (свободных электронов или позитронов) оказываются сильно изломанными, зигзагообразными. Рассмотрим особенности прохождения разных видов излучения через вещество.
α-излучение. В соответствии с наибольшей плотностью ионизации α-частиц пробег их во всех средах очень невелик: даже в воздухе α-излучение распространяется на расстояние, не превышающее 3-7 см, а в плотных средах длина пробега еще меньше. В биотканях пробег α-частицы редко превышает 40-60 мкм, т. е. действие ее обычно ограничено размерами одной клетки. Малая проникающая способность α-излучения делает практически ненужной какую-либо защиту от незакрытых источников α-излучения.
β-излучение. Пробеги β-частиц заметно различаются в зависимости от их энергии. Существуют мягкие излучения с энергией менее 0,5 МэВ и жесткие с энергией более 1 МэВ. Пробег β-частиц жестких излучателей (например, 32Р или 90Y) достигает 10 м и более в воздухе, но в плотных средах составляет всего несколько мм. Реальный пробег (по толщине материала, полностью поглощающего излучение) еще меньше из-за зигзагообразных траекторий движения β-частиц. Поэтому при поверхностном загрязнении почвы внешнее облучение от β-излучающих изотопов (от радиостронция, например) не представляет серьезной опасности, так как излучение не достигает поверхности почвы при нахождении радионуклида уже на глубине более 1 см.
В лаборатории для защиты от β-излучений применяются экраны из органического стекла толщиной до 10 мм. Для работы с мягкими β-излучателями даже такая защита не требуется, так как максимальный пробег в воздухе β-излучения от 14С (максимальная энергия 0,156 МэВ) составляет всего 15 см, от тритии (2Н, максимальная энергии 0,019 МэВ) - менее 5 мм.
γ-излучение. В сравнительном плане проникающая способность γ-радиации является наибольшей, однако с учетом фактора геометрического рассеяния, который пропорционален квадрату расстояния, реальный радиус действия γ-источников на открытой местности составляет - 200-300 м. С помощью самолетов или вертолетов, оборудованных чувствительной аппаратурой, по γ-излучению можно выявлять и наносить на карты уровни радиоактивного загрязнения местности, в картографии это наливается методом аэрогамма съемки. Однако надо помнить, что максимально надежными и точными являются результаты при пролетах на высоте от 25-50 до 200-254) м, но не выше.
В плотных средах γ-излучение способно проходить через десятки и даже сотни сантиметров толщины. Для экранирования γ-излучения выбирают материалы с высокой плотностью, например свинец. Толщина экранирующей защиты определяется общей активностью источника, для надежной защиты может потребоваться толщина свинца до 5-30 см (и даже больше).
Нейтронное излучение. Поглощение нейтронов в плотных средах происходит со сравнительно высокой плотностью ионизации, поэтому проникающая способность их невелика. Вводе быстрые нейтроны замедляются до малых энергий на расстояниях порядка 8 см, в грунтах или строительных конструкциях - до 20-40 см. Механизмы поглощения нейтронов весьма специфичны, поэтому необходимо подбирать специальные материалы для защиты от быстрых или медленных нейтронов.

Понятие «излучение» включает в себя весь диапазон электромагнитных волн, а также электрический ток, радиоволны, ионизирующее излучение. При последнем изменяется физическое состояние атомов и их ядер, превращая их в заряженные ионы или продукты ядерных реакций. Мельчайшие частицы обладают энергией, которая постепенно теряется при взаимодействии со структурными единицами. В результате движения вещество, через которое проникают элементы, ионизируется. Глубина проникновения различна для каждой частицы. Из-за способности изменять вещества радиоактивный свет наносит вред организму. Какие виды излучений существуют?

Корпускулярное испускание. Альфа-частицы

Данный вид представляет собой поток радиоактивных элементов, чья масса отлична от нуля. Примером является альфа и бета-излучение, а также электронное, нейтронное, протонное и мезонное. Альфа-частицы - это ядра атомов, которые испускаются при распаде некоторых радиоактивных атомов. Они состоят их двух нейтронов и двух протонов. Альфа-излучение - это ядра атомов гелия, которые положительно заряжены. Естественное испускание характерно для неустойчивых радионуклидов рядов тория, урана. Альфа-частицы выходят из ядра со скоростью до 20 тысяч км/сек. По пути движения они образуют сильную ионизацию среды, отрывая электроны из орбит атомов. Ионизация лучами приводит к химическим изменениям в веществе, а также к нарушению ее кристаллической структуры.

Характеристика альфа-излучения

Лучи такого вида представляют собой альфа-частицы массой 4,0015 атомных единиц. Магнитный момент и спин равны нулю, а заряд частиц - удвоенному элементарному заряду. Энергия альфа-лучей находится в пределах 4-9 МэВ. Ионизирующее альфа-излучение проявляется при потере атома своего электрона и превращении его в ион. Выбивание электрона происходит за счет большого веса альфа-частиц, которые больше его практически в семь тысяч раз. При прохождении через атом и отрыве каждого отрицательно заряженного элемента частицы теряют свою энергию и скорость. Способность ионизировать материю теряется, когда вся энергия потрачена и альфа-частица преобразуется в атом гелия.

Бета-излучение

Это процесс, при котором электроны и позитроны образуются при бета-распаде элементов от самых легких до самых тяжелых. Бета-частицы сотрудничают с электронами атомных оболочек, передают им часть энергии и вырывают их с орбит. В этом случае образуется положительный ион и свободный электрон. Альфа и бета - излучение обладают разной скоростью движения. Так, для второго вида лучей она приближается к скорости света. Поглотить бета-частицы можно с помощью слоя алюминия толщиной в 1 мм.

Гамма-лучи

Образуются при разложении радиоактивных ядер, а также элементарных частиц. Это коротковолновый тип электромагнитного излучения. Оно образуется при переходе ядра из более возбужденного энергетического состояния в менее возбужденное. Имеет короткую длину волны, поэтому обладает высокой проникающей способностью, что может нанести серьезный вред здоровью человека.

Свойства

Частицы, которые образуются при распаде ядер элементов, могут по-разному взаимодействовать с окружающей средой. Такая связь находится в зависимости от массы, заряда, энергии частиц. К свойствам радиоактивного излучения можно отнести следующие параметры:

1. Проникающую способность.

2. Ионизацию среды.

3. Экзотермическую реакцию.

4. Воздействие на фотоэмульсию.

5. Возможность вызвать свечение люминесцирующих веществ.

6. При длительном воздействии возможны химические реакции и распад молекул. Например, изменяется цвет предмета.

Перечисленные свойства используются при обнаружении излучений по причине неспособности человека улавливать их своими чувствами.

Источники излучений

Существуют несколько причин испусканий частиц. Это могут быть земные или космические объекты, которые содержат радиоактивные вещества, технические устройства, выделяющие ионизирующие излучение. Также причинами появления радиоактивных частиц могут быть ядерно-технические установки, контрольно-измерительные устройства, медицинские препараты, разрушение хранилищ радиационных отходов. Опасные источники делятся на две группы:

  1. Закрытые. При работе с ними излучение не проникает в окружающую среду. Примером будет являться радиационная техника на АЭС, а также аппаратура в рентген-кабинете.
  2. Открытые. В этом случае облучению подвергается окружающая среда. Источниками могут быть газы, аэрозоли, радиоактивные отходы.

Элементы ряда урана, актиния и тория являются естественными радиоактивными элементами. При их распаде происходит излучение альфа-, бета-частиц. Источниками альфа-лучей является полоний с атомной массой 214 и 218. Последний представляет собой продукт распада радона. Это ядовитый в больших количествах газ, который проникает из почвы и накапливается в подвалах домов.

Источники альфа-излучения высоких энергий представляют собой разнообразные ускорители заряженных частиц. Одним из таких устройств является фазотрон. Он представляет собой циклический резонансный ускоритель с постоянным управляющим магнитным полем. Частота ускоряющего электрического поля будет медленно изменяться с периодом. Частицы движутся по раскручивающийся спирали и ускоряются до энергии, равной 1 ГэВ.

Способность проникать через вещества

Альфа-, бета-, гамма-излучения обладают определенным пробегом. Так, движение альфа-частиц в воздухе составляет несколько сантиметров, когда бета-частицы способны пройти несколько метров, а гамма-лучи - до сотни метров. Если человек испытал внешнее альфа-излучение, проникающая способность которого равна поверхностному слою кожи, то он будет в опасности только в случае открытых ран на теле. Сильный вред наносит употребление пищи, облученной данными элементами.

Бета-частицы могут внедриться в организм только на глубину не больше 2 см, а вот гамма-частицы способны вызвать облучение всего тела. Лучи последних частиц могут задержать только бетонные или свинцовые плиты.

Альфа-излучение. Влияние на человека

Энергии этих частиц, образующихся при радиоактивном распаде, не хватит на преодоление начального слоя кожи, поэтому внешнее облучение не несет вреда организму. Но если источником образования альфа-частиц служит ускоритель и их энергия достигает выше десятков МэВ, то угроза нормальному функционированию организма присутствует. Огромный вред наносит непосредственное проникновение внутрь тела радиоактивного вещества. Например, через вдыхание отравленного воздуха или через пищеварительный тракт. Альфа-излучение способно в минимальных дозах вызвать у человека развитие лучевой болезни, которая часто заканчивается смертью пострадавшего.

Альфа-лучи нельзя обнаружить с помощью дозиметра. Попав в организм, они начинают облучать близлежащие клетки. Организм вынуждает клетки делиться быстрее, чтобы возобновить пробел, но заново рожденные опять подвергаются вредному воздействию. Это приводит к потере генетической информации, мутациям, образованию злокачественных опухолей.

Допустимые пределы облучения

Норма ионизирующего излучения в России регулируется «Нормами радиационной безопасности» и «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений». Согласно данным документам, пределы облучения разработаны для следующих категорий:

1. «А». К ней относятся сотрудники, которые работают с источником излучений на постоянной основе или временно. Допустимый предел рассчитывается как индивидуальная эквивалентная доза внешнего и внутреннего излучения за год. Это так называемая предельно допустимая доза.

2. «Б». Категория включает часть населения, которая может подвергаться воздействию источников облучения, так как проживает или работает рядом с ними. В этом случае также рассчитывается допустимая доза за год, при которой в течение 70 лет не будут происходить нарушения здоровья.

3. «В». К типу относится население области, края или страны, попавшее под излучение. Ограничение облучения происходит с помощью введения норм и контроля радиоактивности объектов в окружающей среде, вредных выбросов с АЭС, учитывая дозовые пределы для предыдущих категорий. Влияние излучений на население не подлежит регламенту, так как уровни облучения очень низки. В случаях радиационной аварии в регионах применяются все необходимые меры безопасности.

Меры безопасности

Защита от альфа-излучения не представляет собой проблемы. Радиационные лучи полностью задерживаются плотным листом бумаги и даже человеческой одеждой. Опасность возникает только при внутреннем облучении. Чтобы избежать его, используются средства индивидуальной защиты. К ним относятся спецодежда (комбинезоны, шлемы из молескина), пластиковые фартуки, нарукавники, резиновые перчатки, специальная обувь. Для защиты глаз применяются щитки из оргстекла, также используются дерматологические средства (пасты, мази, кремы), респираторы. На предприятиях прибегают к мерам коллективной защиты. Что касается защиты от газа радона, способного накапливаться в подвалах, ванных комнатах, то в этом случае необходимо часто проветривать помещения, а подвалы изнутри изолировать.

Характеристика альфа-излучения приводит нас к выводу о том, что данный вид имеет низкую пропускную способность и не требует серьезных мер защиты при внешнем облучении. Большой вред наносят эти радиоактивные частицы при проникновении внутрь организма. Элементы данного вида распространяются на минимальные расстояния. Альфа-, бета-, гамма-излучения отличаются друг от друга своими свойствами, проникающей способностью, влиянием на окружающую среду.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).